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4.3.3 Improvement of Models in the Physical Space

Statement of the Problem. Experience shows that the various models
yield good results when they are applied to homogeneous turbulent flows
and that the cutoff is placed sufficiently far into the inertial range of the
spectrum, i.e. when a large part of the total kinetic energy is contained in
the resolved scales?.

In other cases, as in transitional flows, highly anisotropic flows, highly
under-resolved flows, or those in high energetic disequilibrium, the subgrid
models behave much less satisfactorily. Aside from the problem stemming
from numerical errors, there are mainly two reasons for this:

1. The characteristics of these flows does not correspond to the hypotheses
on which the models are derived, which means that the models are at
fault. We then have two possibilities: deriving models from new physical
hypotheses or adjusting existing ones, more or less empirically. The first
choice is theoretically more exact, but there is a lack of descriptions of
turbulence for frameworks other than that of isctropic homogeneous tur-
bulence. Still, a few attempts have been made to consider the anisotropy
appearing in this category. These are discussed in Chap. 5. The other
solution, if the physics of the models is put to fault, consists in reducing
their importance, i.e. increasing the cutoff frequency to capture a larger

part of the flow physics directly. This means increasing the number of de-.

grees of freedom and striking a compromise between the grid enrichment
techniques and subgrid modeling efforts.

2. Deriving models based on the energy at cutoff or the subgrid scales (with
no additional evolution equation) for simulations in the physical space
runs up against Gabor-Heisenberg's generalized principle of uncertainty
[91,285], which stipulates that the precision of the information cannot
be improved in space and in frequency at the same time. This is il-
lustrated by Fig. 4.15. Very good frequency localization implies high
non-localization in space, which reduces the possibilities of taking the
intermittency'® into account and precludes the treatment of highly inho-
mogeneous flows. Inversely, very good localization of the information in
space prevents any good spectral resolution, which leads to high errors,
c.g. in computing the energy at the cutoff. Yet this frequency localization
is very important, since it alone can be used to detect the presence of
the subgrid scales. It is important to recall here that large-eddy simula-

15 Certain authors estimate this share to be between 80 % and 90 % [53]. Another
criterion sometimes mentioned is that the cutoff scale should be of the order
of Taylor’s microscale. Bagget et al. [10] propose to define the cutoff length in
such a way that the subgrid scales will be quasi-isotropic, leading to A = L /10,
where g is the integral dissipation length.

16 Direct numerical simulations and experimental data show that the true subgrid
dissipation and its surrogates do not have the same scaling s [52, 232).
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Fig. 4.15. Representation of the resolution in the space-frequency plane. The spat
ial resolution A is associated with frequency resolution A. Gabor-Heisenberg's
uncertainty principle stipulates that the product A x Ay, remains constant, i.e. that
the area of the gray domain keeps the same value {from [91], with the permission

of F. Ducros).

tion is based on a selection in frequency of modes making up the exact
solution. Problems arise here, induced by the localization of statistical
average relations that are exact, as this localization may correspond to
a statistical average. Two sclutions may be considered: developing an
acceptable compromise between the precision in space and frequency,
or enriching the information contained in the simulation, which is done
either by adding variables to it as in the case of models based on the
kinetic cnergy of the subgrid modes, or by assuming further hypotheses
when deriving models.

In the following, we present techniques developed to improve the simula-
tion results, though without modifying the structure of the subgrid models
deeply. The purpose of all these modifications is to adapt the subgrid model
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better to the local state of the flow and remedy the lack of frequency local-
ization of the imformation.
We will be describing:

1. Dynamic procedures for computing subgrid model constants (p.105).
These constants are computed in such a way as to reduce an a priori
estimate of the error committed with the model comnsidered, locally in
space and time, in the least squares sense. This estimation is made using
the Germano identity, and requires the use of an analytical filter. It

should be noted that the dynamic procedures do not change the model -

in the sense that its form (e.g. subgrid viscosity) remains the same. All
that is done here is to minimize a norm of the error associated with
the form of the model considered. The errors committed intrinsically!?
by adopting an a priori form of the subgrid tensor are not modified.
These procedures, while theoretically very attractive, do pose problems
of numerical stability and can induce non-negligible extra computational
costs. This variation of the constant at each point and each time step
makes it possible to minimize the error locally for each degree of freedom,
while determining a constant value offers only the less efficient possibility
of an overall minimization. This is illustrated by the above discussion of
the constant in the Smagorinsky model. )

2. Structural sensors (p.118), which condition the existence of the subgrid
scales to the verification of certain constraints by the highest frequencies
of the resolved scales. More precisely, we consider here that the subgrid
scales exist if the highest resolved frequencies verify topological proper-
ties that are expected in the case of isotropic homogeneous turbulence.
When these criteria are verified, we adopt the hypothesis that the highest
resolved frequencies have a dynamics ¢close to that of the scales contained
in the inertial range. On the basis of energy spectrum continuity (see the
note of page p.83), we then deduce that unresolved scales exist, and the
subgrid model is then used, but is otherwise canceled. .

3. The accentuation technique (p.120), which consists in artificially increas-
ing the contribution of the highest resolved frequencies when evaluating
the subgrid viscosity. This technique allows a better frequency localiza-
tion of the information included in the model, and therefore a better
treatment of the intermittence phenomena, as the model is sensitive only
to the higher resolved frequencies. This result is obtained by applying a
frequency high-pass filter to the resolved field.

4. The damping functions for the near-wall region (p.123), by which certain
modifications in the turbulence dynamics and characteristic scales of the

7 For example, the subgrid viscosity models described above all induce a linear
dependency between the subgrid tensor and the resolved-scale tensor:

d rd
Tij = ~VsgsSyj
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subgrid modes in the boundary layers can be taken into account. These
functions are established in such a way as to cancel the subgrid viscosity
models in the near-wall region so that they will not inhibit the driving
mechanisms occurring in this area. These models are of limited generality
as they presuppose a particular form of the flow dynamics in the region
considered. They also require that the relative position of each point
with respect to the solid wall be known, which can raise problems in
practice such as when using multidomain techniques or when several
surfaces exist. And lastly, they constitute only an amplitude correction
of the subgrid viscosity models for the forward energy cascade: they are
not able to include any changes in the form of this mechanism, or the
emergence of new mechanisms.

The three “generalist” techniques (dynamic procedure, structural sensor,
accentuation) for adapting the subgrid viscosity models are all based on
extracting a test field from the resolved scales by applying a test filter to
these scales. This field corresponds to the highest frequencies catured by the
simulation, so we can see that all these techniques are based on a frequency
localization of the information contained in the subgrid models. The loss
of localness in space is reflected by the fact that the number of neighbors
involved in the subgrid model computation is increased by using the test
filter.

Dynamic Procedures for Computing the Constants.
Dynamic Models

Germano-Lilly Dynamic Procedure. In order to adapt the models better to
the local structure of the flow, Germano et al. [118] proposed an algorithm for
adapting the Smagorinsky model by automatically adjusting the constant at
each point in space and at each time step. This procedure, described below, is
applicable to any model that makes explicit use of an arbitrary constant Cg,
such that the constant now becomes time- and space-dependent: Cq becomes
Calx, t). : .

The dynamic procedure is based on the Germano identity (3.78), now
written in the form:

Lij =Ty — %5 , (4.126)
in which
Tij = Lij + Cij + Rij =G5 —~ %G w5 _ (4.127)
T, = % - (1.125)
Ly = ﬁ = u:ﬂ;? ) (4.129)

in which the tilde symbol tilde designates the test filter. The tensors » and
T' are the subgrid tensors corresponding, respectively, to the first and second
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filtering levels. The latter filtering level is associated with the characteristic
length A, with 4 > A, Numerical tests show that an optimal value is

A =2A. The tensor L can be computed directly from the resolved field.
We then assume that the two subgrid tensors 7 and T can be modeled by
the same constant Cy for both filtering levels. Formally, this is expressed:

1
= ngkéij = Odﬁij . (4130)
1
Tij — gjkk5ij = Caoy; (4.131)

in which the tensors o and 3 designate the deviators of the subgrid tensors
obtained using the subgrid model deprived of its constant. It is important
noting that the use of the same subgrid model with the same constant is
equivalent to a scale-invariance assumption on both the subgrid fluxes and
the filter, to be discussed in the following.

Some examples of subgrid model kernels for and Bi; are given in Table
4.1.

Table 4.1. Examples of subgrid model kernels for the dynamic procedure.

Model 61'3' Oryg
.
(4.90) —24°[5S 34 15155
(1102) ~24\/F(A)S, — AV F(A)5,;
1t =\l 2\ A2 T St Zyja (52 lmaZz
(4.116) 24" |F@I*(g) 7 Sy —24  |F@)*(@) 7 Sy

Introducing the above two formulas in the relation (4.126), we get!®:

1 —
Li; — -:;kaéij = L% = Cygay — Cd.@ij . (4.132)

We cannot use this equation directly for determining the constant Cy
because the second term uses the constant only through a filtered product
[281]. In order to continue modeling, we need to make the approximation:

Calfiy = CaByy (4.133)

which is equivalent to considering that Cy is constant over an interval at least
equal to the test filter cutoff length. The parameter Cy will thus be computed

18 It is important to note that, for the present case, the tensor L;; is replaced by

its deviatoric part LEJ, because we are dealing with a zero-trace subgrid viscosity
modeling. :
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in such a way as to minimize the error committed'®, which is evaluated using
the residual .

1 ~
Eij = Lij - 'S'ka:dij — Caais + Cafy; - (4.134)

This definition consists of six independent relations, which in theory
makes it possible to determine six values of the constant?’. In order to con-
serve a single relation and thereby determine a single value of the constant,
Germano et al. propose contracting the relation (4.134) with the resolved:
strain rate tensor. The value sought for the constant is a solution of the
problem:

OE;;S;;

9Cq4
This method can be efficient, but does raise the problem of indetermi-
nation when the tensor S; cancels out. To remedy this problem, Lilly [195]

proposes calculating the constant Cyq by a least-squares method, by which
the constant Cy now becomes a solution of the problem:

=0 . (4.135)

U 4.136
=0 (4.136)
or
L Mg Lo , (4.137)
TR
in which
Mij = Qi — B‘ij . (4.138)

The constant Cy thus computed has the following properties:

— It can take negative values, so the model can have an anti-dissipative effect
locally. This is a characteristic that is often interpreted as a modeling of
the backward energy cascade mechanism. This point is detailed in Sect.
4.4.

— It is not bounded, since it appears in the form of a fraction whose denom-

inator can cancel out?!.

19 Meneveau and Katz [227] propose to use the dynamic procedure to rank the
subgrid models, the best one being associated with the lowest value of the
residual. :

20 Which would lead to the definition of a tensorial subgrid viscosity model.

21 This problem is linked to the implementation of the model in the simulation. In

the continuous case, if the denominator tends toward zero, then the numerator

cancels out too. Thcsc are calculation errors that lead to a problem of division
by zero.
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These two properties have important practical consequences on the nu-
nerical solution bhecause they are both potentially destructive of the stability
of the simulation. Numerical tests have shown that the constant can remain
negative over long time intervals, causing an exponential growth in the high

frequency fluctuations of the resolved field. The constant therefore needs an

ad hoc process to ensure the model’s good numerical properties. There are
a number of different ways of performing this process on the constant: sta-
tistical average in the directions of statistical homogeneity [118, 354], in time
or local in space [366]; limitation using arbitrary bounds [366] (clipping); or
by a combination of these methods [354, 366]. Let us note that the averaging
procedures can be defined in two non-equivalent ways [367]: by averaging the
denominator and numerator separately, which is denoted symbolically:

d
o= aly) (4.139)
(mgrmi) _

or by averaging the quotient, i.e. on the constant itself:

d
M5 L

Ca = (Ca) = ( (4.140)

Ml Ml
The ensemble average can be performed over homogeneous directions of
the simulation (if they exist) or over different realizations, i.e. over several
statistically equivalent simulations carried out in parallel [48, 51].
The time average process is expressed:

Calx, (n+1)At) = ayCalx, (n + 1) A1) + (1 - ar)Calondt) | (4.141)

in which At is the time step used for the simulation and a1 < 1 a constant.
Lastly, the constant clipping process is intended to ensure that the following
two conditions are verified: ' '

v Vsgs >0 5 (4.142)

The first condition ensures that the total resolved dissipation £ = 15;;5;;—

7553 remains positive or zero. The second establishes an upper bound. In

practice, Cmax is of the order of the theoretical value of the Smagorinsky

constant, i.e. Crmax =~ (0.2)%. _

The models in which the constant is computed by this procedure are called
“dynamic”because they automatically adapt to the local state of the fow.
When the Smagorinsky model is coupled with this procedure, it is habitually
called the dynamic model, because this combination was the first to.be put
to the test and is still the one most extensively used among the dynamic
models.
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The use of the same value of the constant for the subgrid model at the
two filtering levels appearing in equation (4.126) implicitely relies on the two
following self-similarity assumptions: : .

" — The two cutoff wave numbers are located in the inertial range of the kinetic

energy spectrum,; )
— The filter kernels associated to the two filtering levels are themselves self-
similar.

These two constraints are not automatically satisfied, and the validity of
the dynamic procedure for computing the constant requires a careful analysis.

Meneveau and Lund [229] propose an extension of the dynamic procedure
for a cutoff located in the viscous range of the spectrum. Writing the constant
of the subgrid-scale model C' as an explicit function of the filter characteristic
length, the Germano-Lilly procedure leads to

C@) = c@) =y (4.144)

Let 1 be the Kolmogorov lengthscale. It was said in the introduction
that the flow is fully resolved if A = 7). Therefore, the dynamic procedure is
consistent if, and only if '

dim Cy=C(n)=0 . (4.145)
A—an

Numerical experimefits carried out by the two authors show that the
Germano-Lilly procedure is not consistent, because it returns the value of
the constant associated to the test filter level

Cs=C(A) , (4.146)
vielding
lim Ca =C(rn) £0, r=A/A . (4.147)
A=y
Numerical tests also showed that taking the limit r — 1 or computing the

two values C(A) and C(rA) using least-square-error minimization without
assuming them to be equal yield inconsistent or ill-behaved solutions. A

=solution is to use prior knowledge to compute the dynamic constant. A robust

algorithm is obtained by rewriting equation (4.134) as follows:
Eij = ng - C(4) (f{Z, roy; — ﬁa)) 3 (4.148)

where f(A,r) = C(rA)/C(A) is evaluated by calculations similar to those of
Voke (see page 89). A simple analytical fitting is obtained in the case r = 2:

F(4,2) = max(100,1077), z = 3.23(Re, 3% — ReZ™%%) (4.149)
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where the mesh-Reynolds numbers are evaluated as (see equation (4.70)):

A’S| 4R[S

Rej - 3 ‘RGQZ =

We now consider the problem of the filter self-similarity. Let G; and G,
be the filter kernels associated to the first and second filtering level. For sake

of simplicity, we use the notations A = A; and A = A,. We assume that the
filter kernel are re-written in a form such that:

@) =Giru@) = [ G (""’f‘)u@d& , (4.150)

2l

T(x) = Go +ulz) = / G2 (%_Q—f') w(€)de . (4.151)

We also introduce the test filter Gy, which is defined such that

T=Coru=GCGi+T=GxGxu . (4.152)

The filters Gy and Gy are self-similar if and only if

1. "
Gily) = G2 (L), r=49/2 (4.153)

Hence, the two filters must have identical shapes and may only differ by
their associated characteristic length. The problem is that in practice only
G, is known, and the self-similarity property might not be a priori verified.
Clarati and Vanden Fijnden [49] show that the interpretation of the resolved
field is fully determined by the choice of the test filter G, and that the use
of the same model for the two levels of filiering is fully justified. This is
demonstrated by re-interpreting previous filters in the following way. Let us
consider an infinite set of self-similar filters {F,, = F(ln)} defined as

1 :
Fo(z) = - F (2‘9) Jdan=1"l (4.154)
i3

where F, 7 > 1 and ly are the filter kernel, an arbitrary parameter and a

reference length, respectively. Let us introd'uce a second set {F} = F*(I*}}

defined by
Fr=Fo«Fp ax..xF_o . (4.155)
For posii‘.ive kernel F, we get the following properties:

~ The length I, obeys the same geometrical law as [, :

"
& * *
I=rl,_,, and I, =

L » 4,156
— (4.156)

— {7} constitute a set of self-similar filters.
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Using these two set of filters, the classical filters involved in the dynamic
procedure can be defined as self-similar filters:

Gf(AtJ = Fn(zn) y (4157)
Gi(A) = Fp ((I5) (4.158)
Ga(A3) = FX (1) . (4.159)

For any test-filter G; and any value of r, the first filter operator can be
constructed explicitly :

G1 = Go(Aif7) % GyA17) % ook Gi(Ag /1) | (4.160)

This relation shows that for any test filter of the form (4.157), the two
filtering operators can be rewritten as self-similar ones, justifying the use of
the same model at all the filtering levels.

Lagrangian Dynamic Procedure. The constant regularization procedures based
on averages in the homogeneous directions have the drawback of not being
usable in complex configurations, which are totally inhomogeneous. One tech-
nique for remedying this problem is to take this average along the fluid par-

ticle trajectories. This new procedure [230], called the dynamic Lagrangian

procedure, has the advantage of being applicable in all configurations.
“The trajectory of a fluld particle located at position x at time ¢ is, for
times ¢ previous to t, denoted as:

it
a(t') = x — f z(t), ¢)dt" . (4.161)
tl
The residual {4.134) is written in the following LAgrangian form:

Eij(z,t) = Lij(z.t') — Ca(x, O)mij(z,t') - (4.162)

We see that the value of the constant is fixed at point x at time ¢, which
is equivalent to the same linearization operation as for the Germano-Lilly
procedure. The value of the constant that should be used for computing the

* subgrid model at x at time ¢ is determined by minimizing the error along

the Auid particle trajectories. Here too, we reduce to a well-posed problem

by defining a scalar residual F,e, which is defined as the weighted integral

along the trajectories of fhe residual proposed by Lilly:

Elangt Ei;(z(t),t) B (z(t), )Wt — t)dt' (4.163).

in which ‘J_Ll.'.l&'. weighting function W (¢t —1t') is introduced to control the memory
effect. The constant is a solution of the problem:



